Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Anthropogenic greenhouse gas emissions significantly impact the middle and upper atmosphere. They cause cooling and thermal shrinking and affect the atmospheric structure. Atmospheric contraction results in changes in key atmospheric features, such as the stratopause height or the peak ionospheric electron density, and also results in reduced thermosphere density. These changes can impact, among others, the lifespan of objects in low Earth orbit, refraction of radio communication and GPS signals, and the peak altitudes of meteoroids entering the Earth's atmosphere. Given this, there is a critical need for observational capabilities to monitor the middle and upper atmosphere. Equally important is the commitment to maintaining and improving long‐term, homogeneous data collection. However, capabilities to observe the middle and upper atmosphere are decreasing rather than improving.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            The impact of the quasi‐biennial oscillation (QBO) on tropical convection and precipitation is investigated through nudging experiments using the UK Met Office Hadley Center Unified Model. The model control simulations show robust links between the internally generated QBO and tropical precipitation and circulation. The model zonal wind in the tropical stratosphere was nudged above 90 hPa in atmosphere‐only and coupled ocean‐atmosphere configurations. The convection and precipitation in the atmosphere‐only simulations do not differ between the experiments with and without nudging, which may indicate that SST‐convection coupling is needed for any QBO influence on the tropical lower troposphere and surface. In the coupled experiments, the precipitation and sea‐surface temperature relationships with the QBO phase disappear when nudging is applied. Imposing a realistic QBO‐driven static stability anomaly in the upper‐troposphere lower‐stratosphere is not sufficient to simulate tropical surface impacts. The nudging reduced the influence of the lower troposphere on the upper branch of the Walker circulation, irrespective of the QBO, indicating that the upper tropospheric zonal circulation has been decoupled from the surface by the nudging. These results suggest that grid‐point nudging mutes relevant feedback processes occurring at the tropopause level, including high cloud radiative effects and wave mean flow interactions, which may play a key role in stratospheric‐tropospheric coupling.more » « less
- 
            Abstract The World Climate Research Programme (WCRP) envisions a world “that uses sound, relevant, and timely climate science to ensure a more resilient present and sustainable future for humankind.” This bold vision requires the climate science community to provide actionable scientific information that meets the evolving needs of societies all over the world. To realize its vision, WCRP has created five Lighthouse Activities to generate international commitment and support to tackle some of the most pressing challenges in climate science today. The overarching goal of the Lighthouse Activity on Explaining and Predicting Earth System Change is to develop an integrated capability to understand, attribute, and predict annual to decadal changes in the Earth system, including capabilities for early warning of potential high impact changes and events. This article provides an overview of both the scientific challenges that must be addressed, and the research and other activities required to achieve this goal. The work is organized in three thematic areas: (i) monitoring and modeling Earth system change; (ii) integrated attribution, prediction, and projection; and (iii) assessment of current and future hazards. Also discussed are the benefits that the new capability will deliver. These include improved capabilities for early warning of impactful changes in the Earth system, more reliable assessments of meteorological hazard risks, and quantitative attribution statements to support the Global Annual to Decadal Climate Update and State of the Climate reports issued by the World Meteorological Organization.more » « less
- 
            Abstract The boreal‐winter stratospheric polar vortex is more disturbed when the quasi‐biennial oscillation (QBO) in the lower stratosphere is in its easterly phase (eQBO), and more stable during the westerly phase (wQBO). This so‐called “Holton–Tan effect” (HTE) is known to involve Rossby waves (RWs) but the details remain obscure. This tropical–extratropical connection is re‐examined in an attempt to explain its intraseasonal variation and its relation to Rossby wave breaking (RWB). Reanalyses in isentropic coordinates from the National Centers for Environmental Prediction Climate Forecast System for the 1979–2017 period are used to evaluate the relevant features of RWB in the context of waveguide, wave–mean‐flow interaction, and the QBO‐induced meridional circulation. During eQBO, the net extratropical wave forcing is enhanced in early winter with ∼25% increase in upward propagating planetary‐scale Rossby waves (PRWs) of zonal wave‐number 1 (wave‐1). RWB is also enhanced in the lower stratosphere, characterized by convergent anomalies in the subtropics and at high latitudes and strengthened waveguide in between at 20°N–40°N, 350–650 K. In late winter, RWB leads to finite amplitude growth, which hinders upward propagating PRWs. The effect is most significant for zonal wave‐numbers 2 and 3 (wave‐2‐3). During wQBO, RWB in association with wave‐2‐3 is enhanced in the upper stratosphere. Wave absorption/mixing in the surf zone reinforces a stable polar vortex in early to middle winter. A poleward confinement of the extratropical waveguide in the upper stratosphere forces RWB to extend downward around January. A strengthening of upward propagating wave‐2‐3 follows and the polar‐vortex response switches from reinforcement to disturbance around February, thus a sign reversal of the HTE in late winter. Key Findings• Rossby wave breaking (RWB) is enhanced in the height regions where the zero‐wind line is shifted into the winter hemisphere and where the QBO‐induced meridional circulation is directed toward the winter pole• Polar vortex responses differ in terms of the height location of RWB, zonal wave‐number‐dependent disturbances and seasonal development• Significant increase in wave‐1 occurs when the QBO is in its easterly phase• A cumulative effect of RWB results in enhanced wave forcing of zonal wave‐numbers 2 and 3 during westerly QBO, which manifests in a sign reversal of the Holton–Tan effect in late winter.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
